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Abstract A moving horizon estimator is designed in the framework of the proxi-
mal point minimization algorithm for linear time invariant systems and convergence
results are established in the presence of model and measurement noise. The state
estimator is implemented in a nonlinear suboptimal feedback control framework for
the real time stabilization of a double inverted pendulum on a cart.

1 Introduction

The double inverted pendulum (DIP) is commonly used as a benchmark problem
in nonlinear control theory as it is an under-actuated system with highly nonlinear
dynamics which is amenable to laboratory study. Control of the DIP can also provide
a direct model for systems such as robotic limbs [14], human posture, balance, and
gymnast motion [16, 19].

Many control designs have been applied to the DIP system including the linear
quadratic regulator (LQR) [7, 9], state dependent Riccati equation control [7], and
neural network control [7, 18]. Less work has been done for state estimation of the
DIP as many studies use only simulations. State estimation though, is necessary for
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real-time experimental set ups and has been accomplished with Luenburger type
observers [11] and low pass derivative filters [6].

The DIP on a cart, consists of two pendula in tandem connected on a hinge to a
cart which moves on a linear track as shown in Figure 1. Stabilization control refers
to moving the cart along the track, such that the pendula are balanced vertically
over the cart in an upright unstable equilibrium. While the pendulum angles and
cart position are directly measured, for feedback control of the system, the velocity
of the cart and pendulum angles must be estimated.

State estimation for DIP stabilization control has been found to be a challenging
task for some methods [5]. The stabilization control of the DIP from an upright start
provides an interesting problem, as it can require rapid convergence of state esti-
mates, from a poor initial estimate, in order for the feedback control to rescue the
system. The estimation method must also achieve robust performance in the pres-
ence of significant model error, measurement error, and disturbances to be effective.

This paper studies state estimation and stabilization control of a DIP on a cart.
A nonlinear feedback stabilization control is designed using power series expan-
sion following Garrard [10]. State estimation is approached from a proximal point
perspective to construct a moving horizon estimator.

Moving horizon estimation (MHE) most commonly minimizes a least squares
cost functional, which includes a regularizing term frequently called the arrival cost,
to fit a model trajectory to the N most recent system measurement outputs. Inclusion
of an arrival cost term has been found to be important to ensure convergence and
stability properties of MHE algorithms [2, 17]. The arrival cost penalizes the differ-
ence between the new and previous state estimate and has been interpreted in several
ways; as an estimate of the error of the fit to the truncated measurement history when
MHE is viewed as approximating the Kalman filter [17], approximating use of an
a-priori distribution in probabilistic settings [8], more loosely as a confidence in the
past estimate [2], and can also be viewed as a regularization term for solving the
state to output inverse problem when MHE is considered as an approximation of a
deadbeat observer.

MHE algorithms have been found to converge quickly from poor initial estimates
[3,12,17] and to perform robustly in the presence of noise [1,3]. Similar results have
been observed in online applications, including charge estimation of batteries [15]
and state estimation of a vibrating active cantilever [1].

We approach iterative minimization for state estimation through the framework
of the proximal operator and proximal point minimization algorithm. The proximal
point minimization algorithm as given in [13] naturally gives rise to a quadratic
regulating term similar to the arrival cost terms shown to be effective for MHE in
practice. We develop and show convergence of a linear discrete time state estima-
tor in this framework, similar to the MHE given by Alessandri et. al. in [2], and
implement it for stabilization of the DIP system.

This paper is organized as follows. In section 2, we construct a proximal point
MHE state estimator and give convergence results. In section 3, we introduce the
double inverted pendulum system and mathematical model. Section 4 describes a
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power series based feedback stabilization control, and we implement the control
and state estimate on the physical DIP system in section 5.

2 A Proximal Point Moving Horizon Estimator for Linear Time
Invariant Systems

Let Φ ∈ Rd×d , W ∈ Rd×v, C ∈ Rm×d , and controls u ∈ Rv. Consider the following
discrete dynamical system

xk+1 = Φxk +Wuk +ηk

yk+1 =Cxk+1 + εk ,
(1)

where {ηk}k∈N and {εk}k∈N are unknown model and measurement noise, respec-
tively.

Given the past N system outputs {yk−i}0
i=N−1, an estimate for the state at xk is

constructed with a moving horizon type state estimator using a least squares cost
functional, by solving a problem of the form

min
{zk− j}0j=N−1

||zk−(N−1)− x̂k−(N−1)||2 +
0

∑
i=N−1

|| yk−i−Czk−i||2

subject to zk−i+1 = Φzk−i ∀i ∈ 0,1, ..N−1 ,

(2)

where x̂k−(N−1) is the previous state trajectory estimate and the first term in the cost
functional (2) is taken as the arrival cost type term.

We approach the minimization at each iteration of MHE as applying the proxim-
ity operator of the trajectory fitting functional to the previous state estimate.

Definition 1. Let the function φ : Rd → [−∞,∞] and γ ∈]0,∞[. The proximity oper-
ator of γφ is defined by

Proxγφ : Rd → Rd : x→ argminz∈Rd φ(z)+
1
2

1
γ
||z− x||2 .

Iterative application of the proximity operator can generate a minimizing se-
quence for a given cost functional. In particular if φ convex, proper, and lower
semi-continuous, with argmin φ 6= { /0} then for all γ ∈]0,∞[, Proxγφ is well de-
fined. Moreover, for any initial value z0 ∈ Rd with sequence {γk}k∈N in ]0,∞[ such
that ∑k∈N γk = ∞ the proximal point iteration

zk+1 = Proxγkφ zk

generates a minimizing sequence of φ [4].
We consider the design of a discrete time state estimator for the system (1) by

constructing functionals {φk}k∈N such that argminz∈Rd φk(z) = xk. Then we define
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the proximal point observer as the sequences {x̂k}k∈N and {pk}k∈N constructed ac-
cording to the recursion

pk = Proxγkφk x̂k

x̂k+1 = f (pk) .
(3)

Functionals capturing least squares type moving horizon estimators can be con-
structed with a G ∈ R(N·m)×d giving the model to output map and vector vk ∈ RN·m

incorporating the model and measurement noise, in the form

φk(z)
.
=

1
2
||G(xk− z)+ vk||2 . (4)

For example for the MHE given in (2)

G =

 CΦ

. . .

C (Φ)N

 , vk =

 Cηk + εk
. . .

C ∑
N−2
j=0 ΦN−1− jηk+ j +Cη(k+(N−1))+ εk+N

 .

Suppose that the matrix GT G is positive definite, then each φk has a unique min-
imizer z∗k , given by

z∗k = xk +(GT G)−1GT vk .

The discrepancy between the minimizer and the true state of the system is denoted
as the noise term ζk, where for each functional

ζk = (GT G)−1GT vk.

For convenience the functionals are also adjusted such that the minimum value
is zero as follows

φk(z) =
1
2
||G(xk− z)+ vk||2−

1
2
||(I−G(GT G)−1GT )vk||2 ,

which may be written more conveniently as

φk(z) =
1
2
||G((xk +ζk)− z)||2 . (5)

Using functionals of the form (5) the error for the proximal observer estimates (3)
follows a simple recursion. For the following it is assumed GT G is positive definite,
with U ∈ Rd×d a unitary matrix, and Λ ∈ Rd×d diagonal such that GT G = UΛUT .
The eigenvalues of GT G are denoted by {λi}d

i=1.
From an initial estimate x̂0, let the sequences {x̂k}k∈N and {pk}k∈N be generated

according to (3) using the cost functionals (5), with sequence of weighting parame-
ters {γk}k∈N in R>0.

Proposition 1. The error terms ek = (x̂k− xk) satisfy the recursion

ek+1 = ΦUΛ̄kUT ek + ΦUΛ̈kUT
ζk − ηk
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Where the diagonal matrices Λ̄k, Λ̈k have entries Λ̄i,i =
1

1+ γkλi
, and Λ̈i,i =

γkλi

1+ γkλi
.

Proof. Here we provide only the main steps of the proof. Note from (3)

pk = ProxγkφGk
(x̂k) = argminz∈Rn

{
1
2
||G(z− (xk +ζk))||2+

1
2γk
||z− x̂k||2

}
.

Then computing the gradient and setting it equal to zero yields

pk = (GT G+
1
γk

I)−1GT G(xk +ζk) +
1
γk
(GT G+

1
γk

I)−1x̂k .

Using the fact GT G =UΛUT ,

pk =U(Λ+
1
γk

I)−1
ΛUT xk +

1
γk

U(Λ+
1
γk

I)−1UT x̂k + U(Λ+
1
γk

I)−1
ΛUT

ζk .

Therefore,

(pk− xk) =U((Λ+
1
γk

I)−1
Λ− I)UT xk +

1
γk

U(Λ+
1
γk

I)−1UT x̂k + U(Λ+
1
γk

I)−1
ΛUT

ζk .

Note that

(Λ+
1
γk

I)−1
Λ− I =−Λ̄k,

1
γk
(Λ+

1
γk

I)−1 = Λ̄k, (Λ+
1
γk

I)−1
Λ = Λ̈k

then
(pk− xk) =UΛ̄kUT ek +UΛ̈kUT

ζk .

Therefore,

ek+1 = (x̂k+1− xk+1) = Φ(pk− xk)−ηk = ΦUΛ̄kUT ek +ΦUΛ̈kUT
ζk−ηk .

The error recursion of proposition 1, can be used to choose weighting parameters
{γk}k∈N to ensure the error is small relative to the noise. In particular, suppose for all
k ∈N, γk = γ , then the proximal points pk can be computed more efficiently at each
iteration. A criteria for selecting a fixed γ follows immediately from proposition 1.

Proposition 2. If λmin the smallest eigenvalue of GT G and γ > max
{
||Φ||−1

λmin
,0
}

,

then
lim
k→∞
||ek||≤

κ

1− r
,

where κ = ||Φ||ζ̄ + η̄ and r =
||Φ||

1+ γλmin
.

Proof. Using proposition 1 for all k ∈ N
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||ek+1|| ≤ ||Φ||
1

1+ γλmin
||ek|| + ||Φ||

γλmax

1+ γλmax
||ζk|| + ||ηk||

≤ r||ek||+κ

.

Therefore,

||ek||≤ ||e0||rk +κ

k

∑
m=0

rm ,

and r < 1, hence
lim
k→∞
||ek||≤

κ

1− r
.

2.0.1 Centered Proximal Point Observer

Many cost functionals of the form (5) can be constructed for discrete systems (1).
A functional utilizing only the three most recent measurements was found to be
effective for the DIP state estimation problem. For all k ∈ N let the function φcntrk :
Rd → R be defined as

φcntrk (z)
.
=

1
2
||C(Φ−1z+W−1uk−1)− yk−1||2+

1
2
||Cz− yk||2+

1
2
||C(Φz+Wuk)− yk+1||2 . (6)

Then with vk ∈ R3·m and G ∈ R(3·m)×d given by

G =

CΦ−1

C
CΦ

 and vk =

−CΦ−1ηk−1 + εk−1
εk

Cηk + εk+1

 ,

φcntrk is of the form (5).

3 Mathematical Model of the Double Inverted Pendulum

The DIP system used in this work was provided by Quanser Consulting Inc. and
consists of an upper (12 in.) aluminium rod connected on a hinge to a lower (7
in.) rod which is in turn connected on a hinge to a cart (an IPO2 linear servo unit)
that moves on a track as shown in Figure 1. Encoders measure three variables; the
position of the cart (xc), the angle between the lower pendulum and normal vector
vertical to the cart (α), and the angle between the lower and upper pendulum (θ).
The measurements are defined such that upright unstable equilibrium is the origin
and counterclockwise rotation is positive. The system is controlled through voltage
input to a DC motor that moves the cart along the track.

The model for the DIP is derived using Lagrange’s energy method as is com-
monly done, for example in, [7, 9, 11]. A full derivation and description of the
model can be found in [5, 6].
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x

y

α > 0

xc

u > 0

θ > 0

Fig. 1: Diagram and photo of the DIP system.

4 Power Series Stabilization Controller

For an f : R6→ R6 and B ∈ R6, with control, u : [0,∞[→ R, the DIP dynamics are
given by a system of the form

ẋ = f (x)+Bu for x = [xc,θ ,α, ẋc, θ̇ , α̇]T .

A feedback stabilization control is constructed with respect to the cost functional

J(x0,u) =
1
2

∫
∞

0
xT Qx+Ru2dt , (7)

with Q ∈ R6×6 and R ∈ R, symmetric positive definite matrices. The optimal feed-
back control is

u(x) .
=−R−1BTVx(x) ,

where V is the solution to the corresponding Hamilton Jacobi Bellman equation,
which is approximated using power series expansions following [10]. Let f be ex-
panded about the unstable equilibrium as

f (x) = Ax+
∞

∑
n=2

fn(x), where fn(x) = O(|x|n) .

Then for P the solution of the algebraic Riccatti equation corresponding to the lin-
earized system and cost functional (7), the control for the DIP is given in the feed-
back form

u∗(x) =−R−1BT
[
Px−

(
AT −PBR−1BT )−1

P f3(x)
]
. (8)

Full details can be found in [5].



8 Amanda Bernstein, Ethan King and Hien Tran

5 Real time stabilization of a double inverted pendulum

The centered proximal point observer was applied to the DIP system by first con-
structing a discrete system of the form (1) using a linearization of the the nonlinear
DIP model about the unstable equilibrium. The state transition matrices Φ, Φ−1, W ,
and W−1 for the linearized system were approximated using Matlab’s expm com-
mand. A fixed (γ > 0) was used in the computation of state estimates according to
proximal point observer (3) using the cost functionals (6), which at each iteration
requires a solution to

pk = argminz∈R6
1
2
||Hz−qk||2 , (9)

for

H =


1
γ
I

CΦ−1

C
CΦ

 and qk =


1
γ
x̂k

yk−1−CW−1Bun−1
yk

yk+1−CWBun

 .

To compute (9), an offline QR factorization for H = QHRH was computed with
the Matlab qr command. Then the centered proximal point moving horizon estima-
tion (CPX) with a fixed γ was iterated from initial estimate x̂0 = 0 according to

pk = R−1
H QT

Hqk

x̂k+1 = Φpk +Wuk .
(10)

When implemented for the DIP feedback control in real time, the estimates supplied
to compute the control were the model predictions x̃k+2 = Φx̂k+1 +uk+1.

The power series feedback stabilization control was computed with

Q = diag([80,300,100,0,0,0]) and R = .5 ,

where the state of the system is x = [xc,θ ,α, ẋc, θ̇ , α̇]T .
The estimator and control were implemented in real time through MATLAB

Simulink interfaced with Quanser’s Quarc software on a desktop computer run-
ning Windows 7 with a 3.20 GHz Intel Core i5 650 processor and 4 GB of RAM,
connected to the DIP system by two Q2-USB DAQ control boards, with the control
voltage applied to the cart by a VoltPAQ amplifier.

For a comparison study, both a CPX and a second order low pass derivative filter
(LDF) were used to supply state estimates for stabilization control. The CPX estima-
tor (10) was applied with γ = 150, while the LDF was used with Quanser’s supplied
parameters: cutoff frequency ω = 100π for the cart, ω = 20π for the pendulum an-
gles, and damping ratios .9. Stabilization control was initiated once measurement
values were brought to within .01 of the balanced state, the average value and vari-
ance for the measured DIP states when under stabilization control with CPX and
LDF are reported in Table 1. Feedback control using the CPX estimates maintained
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the system closer to the balanced state and with less variance than with LDF esti-
mates.

xc (cm) α (degrees) θ (degrees)
mean variance mean variance mean variance

CPX -.002 5.52 .178 35.2 -.45 3.89
LDF -.119 5.98 1.21 41.8 -.867 6.78

Table 1: Output of DIP stabilization over (6.5 sec) interval using either centered
proximal point MHE (CPX) or low pass derivative filter (LDF) to compute the feed-
back control, the stabilized state is the origin

The CPX and LDF differed most for the estimates of the rate of change for θ ,
the angle between the pendulums. Figure 2 shows a comparison between CPX and
LDF angle velocity estimates using measurement data from the physical DIP system
under stabilization control.

Fig. 2: Comparison of CPX and LDF angle velocity estimates for the real time DIP
system under stabilization control.

The criteria for γ to guarantee CPX estimate convergence given in Proposition
2 is γ ≥ 24400 for the DIP system. When values of γ satisfying the condition were
used the CPX angle velocity estimates had large amplitude high frequency oscilla-
tions unsuitable for computing a control, γ was reduced two orders of magnitude
from the Proposition 2 criteria before a reasonable control could be computed. The
need for a smaller γ value is likely due to H in (9) becoming more ill conditioned
for larger γ and the solutions of (9) more sensitive to noise.
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