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Abstract— We present a nonlinear discrete time feedback
control design by searching over a family of controls and
associated candidate quadratic control Lyapunov functions
parameterized by the symmetric positive definite matrices
using an ensemble Kalman search. Then we propose a novel
relaxation of the control which can be used to tune for a
particular implementation. We show that the proposed family
of controls are globally exponentially stable for linear systems,
and test the controls on both a linear and nonlinear example.

I. INTRODUCTION
Designing controls for nonlinear systems remains a chal-

lenging problem. A classical approach first defines a perfor-
mance cost functional of the state and control values, then
constructs the control which minimizes the cost. Controls
that are optimal with respect to a meaningful cost functional
often have favorable properties such as robustness to mea-
surement and model noise, and avoid counterproductive con-
trol effort [1], [2]. For linear systems, optimal controls can be
constructed by the solution of the Hamilton Jacobi Bellman
(HJB) equation corresponding to the cost [1]. However, for
nonlinear systems the HJB equation is generally intractable,
though many methods do exist for approximating the optimal
control [3], [4], [5]. An alternative strategy is to approach
the problem from an inverse optimal perspective, by directly
designing a control for a system, then validating it as optimal
with respect to a constructed cost functional.

Direct design of a control can be done by using a con-
trol Lyapunov function (CLF). For instance Freeman and
Kokotovic showed that given a CLF for a continuous time
system, a control can be constructed to be optimal with
respect to a corresponding cost functional [6]. Construction
of a CLF though, is difficult in general. For discrete time
systems Ornelas-Tellez et al. propose searching over a family
of controls and associated quadratic CLFs parameterized by
the symmetric positive definite (SPD) matrices [7], [8].

We propose searching over a related family of controls
defined by projections with respect to the norms character-
ized by the SPD matrices, and give a novel relaxation of the
proposed controls, which can be used to tune the response
for a particular implementation.

Control design following Onelas-Tellez et al. has been
implemented on a variety of nonlinear systems, with the
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necessary SPD matrix found by using the speed gradient
method [8], particle swarm optimization [9], [7], the ex-
tended Kalman filter [10], and more recently an ensemble
Kalman filter [11].

For the synthesis of the controls considered here, we
present an ensemble Kalman search procedure to find an
appropriate SPD matrix. Ensemble Kalman methods use
ensemble statistics and a Kalman filter update to minimize
a least squares cost functional. They are derivative free with
straightforward parallelizable implementations. The ensem-
ble Kalman filter was introduced for state estimation in noisy
systems by Evensen in [12] and has since been adapted for
a widening array of applications within inverse problems,
including parameter estimation [13], [14] and training of
neural networks [15], [16].

This paper is structured as follows. In section II, we
define a control for discrete time systems which can be
understood as an iterative projection with respect to a SPD
matrix. In section III, we present a relaxation of the control
for implementation and prove global exponential stability of
the relaxed control for linear systems. In section IV and
V, we introduce an ensemble Kalman search procedure for
identifying controls for a given system. In section VI, we
test the efficacy of the presented control design strategy on
both a linear and nonlinear example.

II. P PROJECTION CONTROL

Let f : Rd → Rd and g : Rd → Rd×m describe a discrete
dynamical system, with control inputs u ∈ Rm, where from
state xk ∈ Rd , using control uk at time step k, the next state
is given by

xk+1 = f (xk)+g(xk)uk . (1)

The control objective is to drive the state of the system to a
given point which, without loss of generality, is taken here
to be the origin.

For a symmetric positive definite (SPD) matrix (P∈Rd×d
sym )

and (x ∈ Rd),(y ∈ Rd) let

〈x | y〉P
.
= xT Py ||x||P

.
=
√

xT Px

be the P inner product and norm respectively on Rd .
An SPD matrix P is sought such that system (1) with the

control

uk = argminu∈Rm
1
2
|| f (xk)+g(xk)u||2P (2)

will converge to the origin from a given set of initial states.
Using what will be assumed here, that for all (x ∈ Rd)

the columns of g(x) are nonzero and linearly independent,



the control (2) is well defined for all inputs xk, and can be
written explicitly. In particular ∇u[

1
2 || f (xk)+ g(xk)u||2P] = 0

if and only if

g(xk)
T Pg(xk)u =−g(xk)

T P f (xk) .

Note that g(xk)
T Pg(xk) is the Gramian matrix of the columns

of g(xk) with respect to the P inner product, hence by the
above assumption is positive definite, therefore invertible, so
the unique feedback control at state xk may be written as

uk =−(g(xk)
T Pg(xk))

−1g(xk)
T P f (xk) . (3)

The control is, at each iteration k, the projection with
respect to the P norm, of the future state in the absence
of control, f (xk), onto the linear subspace

g(xk)
P⊥ .

= {y ∈ Rn : g(xk)
T Py = 0} .

This can be shown by the orthogonal decomposition of f (xk)
with respect to the P inner product.

Supposing that there exists a P such that control (3) is
globally asymptotically stable for a given system, still the
control may be unfeasible for implementation as the control
magnitude may be unreasonably large when f (xk) is far from
the subspace g(xk)

P⊥ .
With SPD matrices (P ∈Rd×d

sym ) and (E ∈Rm×m
sym ) a similar

control to (2) can be constructed with an explicit penalty on
the magnitude of the control, given by

uk = argminu∈Rm

{
1
2
|| f (xk)+g(xk)u||2P +

1
2
||u||2E

}
,

which has the explicit feedback form

uk =−(g(xk)
T Pg(xk)+E)−1g(xk)

T P f (xk) . (4)

Controls of this form are searched over in the framework
presented by Ornelas-Tellez et al.[7], [8]. Note that it in-
cludes the optimal feedback controls for linear time invariant
systems with respect to an infinite horizon Linear Quadratic
Regulator (LQR) functional. That is for f and g linear, with
the system dynamics for some (A ∈ Rd×d) and (B ∈ Rd×m)
given by

xk+1 = Axk +Buk .

If there exists an SPD matrix Q for an LQR cost functional
of the form

J({uk}k∈N)
.
=

∞

∑
k=1

xT
k Qxk +uT

k Euk ,

such that P is the solution of the corresponding Algebraic
Riccati equation, then (4) is the corresponding optimal LQR
feedback control [1]. Therefore it is perhaps unsurprising
that an effective control of this form can be found for many
systems.

Rather than directly penalizing control effort as above, in
the next section we consider an implicit penalty to modulate
the control.

III. RELAXED P PROJECTION CONTROL

Here we study a control with an implicit penalty on the
control magnitude. For a SPD matrix P and positive scaling
parameters {γk}k∈N, we consider the control

uk = argminu∈Rm
1
2
( || f (xk)+g(xk)u||2P+

1
γk
|| f (xk)+g(xk)u−xk||2P ) ,

(5)
which may be written more intuitively as

uk = argminu∈Rm
1
2
( ||xk+1||2P +

1
γk
||xk+1− xk||2P ) .

Using again the assumption that for all (x ∈ Rd) the
columns of g(x) are nonzero and linearly independent, the
control (5) is well defined and can be written in an explicit
feedback form. Note that

∇u[
1
2
|| f (xk)+g(xk)u||2P +

1
2

1
γk
|| f (xk)+g(xk)u− xk||2P] = 0

if and only if

(1+
1
γk
)g(xk)

T Pg(xk)u=−( (1+
1
γk
)g(xk)

T P f (xk)−
1
γk

g(xk)
T Pxk) .

Therefore the control is given by

uk =−(g(xk)
T Pg(xk))

−1g(xk)
T P( f (xk)−

1
γk +1

xk) . (6)

The sequence {γk}k∈N can be selected to modulate the
control when the state is far from the equilibrium, but allow
for faster convergence once the state is near the origin, in
particular for some (γ > 0) and (α > 0) we explore the
choice

γk =
γ

||xk||α2
, (7)

and prove that it produces a globally exponentially stable
feedback control for linear systems.

A. Global Exponential Stability for Linear Systems

Let (A ∈ Rd×d) and (B ∈ Rd×m) with controls u ∈ Rm

describe the discrete dynamics

xk+1 = Axk +Buk . (8)

Suppose that the columns of B are linearly independent, then
for a given SPD matrix P, using the feedback control (3),
leads to the state update recursion

xk+1 = (I−B(BT PB)−1BT P)Axk .

Let
PBP⊥

.
= I−B(BT PB)−1BT P

denote the P projection operator onto BP⊥ .

Definition 1. Let P ∈ Rd×d an SPD matrix, P is stabilizing
for (8) if with {λi}d

1 the eigenvalues of (PBP⊥A), for all i ∈
{1,2 . . . ,d}, |λi|< 1.

Given a stabilizing P, we can apply the modulated control
(5), with sequence {γk}k∈N, which will give the state update
recursion

xk+1 = PBP⊥Axk +
1

1+ γk
B(BT PB)−1BT Pxk , (9)



which will converge for only mild assumptions on the
sequence {γk}k∈N.

Theorem 2. Let P a stabilizing SPD matrix for (8), and
parameters (γ > 0),(α > 0). The feedback control (6), with
γk =

γ

||xk||α2
is globally exponentially stable.

To show Theorem 2, we first establish an explicit relation
for the state at each iteration in terms of the initial value when
the modulated control (6) is used, from which conditions for
convergence easily follow. For the following discussion we
denote the range of a matrix B ∈ Rd×m as

R(B) .
= {x ∈ Rd | ∃z ∈ Rm s.t. x = Bz} .

Proposition 3. Let the initial condition be x0 ∈ Rd , and
let v0 ∈ BP⊥ and z0 ∈ R(B) give the unique P orthogonal
representation, x0 = v0+z0. Then using feedback control (6),
for all k ≥ 1 the following holds

xk = (PBP⊥A)kv0 +
k−1

∑
m=0

(
(k−1)−m

∏
i=0

1
1+ γi

)(PBP⊥A)mz0 . (10)

Proof: Employing proof by induction, suppose that

xk = (PBP⊥A)kv0+
k−1

∑
m=1

(
(k−1)−m

∏
i=1

1
1+ γi

)(PBP⊥A)mz0+
(k−1)

∏
i=0

1
1+ γi

z0 .

Note

(PBP⊥A)kv0 +
k−1

∑
m=1

(
(k−1)−m

∏
i=1

1
1+ γi

)(PBP⊥A)mz0 ∈ BP⊥ ,

therefore,

B(BT PB)−1BT P

(
(PBP⊥A)kv0 +

k−1

∑
m=1

(
(k−1)−m

∏
i=1

1
1+ γi

)(PBP⊥A)mz0

)
= 0

and (z0 ∈ R(B)), so

B(BT PB)−1BT Pz0 = z0 .

Hence, it follows

xk+1 = PBP⊥Axk +
1

1+ γk
B(BT PB)−1BT Pxk

= (PBP⊥A)k+1v0 +
k

∑
m=1

(
(k)−m

∏
i=1

1
1+ γi

)(PBP⊥A)mz0 +
(k)

∏
i=0

1
1+ γi

z0 .

Let P a stabilizing matrix for (8), and {λi}n
i=1 the eigenval-

ues of PBP⊥A with λmax = max{|λi| : i∈ {1, . . .n}}. Since P
is stabilizing, there exists a σ with λmax < σ < 1 and M > 0
such that for all (y0 ∈Rd), if {yk}k∈N given by y1 = PBP⊥Ay0
and

yk+1 = PBP⊥Ayk ,

then for all k ∈ N

||yk||< Mσ
k||y0|| .

Proposition 4. Let x0 ∈ Rd , let v0 ∈ BP⊥ and z0 ∈ R(B)
such that x0 = v0 + z0, then for any sequence ({γk}k∈N in
]0,∞[),using feedback control (6) for all (k ≥ 0)

||xk||2 ≤M
(
||v0||2 +

1
1−σ

||z0||2
)
.

Proof: From (10), and since (∀k ∈ N), ( 1
1+γk

< 1) it
follows that

||xk||2 ≤M(σ)k||v0||2 +M
k

∑
m=0

(σ)m||z0||2

and 0 < σ < 1, hence the result.

Proposition 5. Let sequence ({γk}k∈N in ]0,∞[), if there
exists η ∈]0,1[ such that (∀k ∈ N), 1

1+γk
< η , then the

feedback control (6) is globally exponentially stable

Proof: Let r = max{σ ,η}, then using (10),

||xk||2 ≤Mσ
k||v0||2 +M

k−1

∑
m=0

η
(k−1)−m

σ
m||z0|| ,

therefore,

||xk||2 ≤Mσ
k||v0||2 +Mkrk−1||z0||2 .

Since (0 < σ < 1) and (0 < r < 1), then for a 1 > κ >
max{σ ,r}, there exists an K such that for all (x0 ∈Rd) and
(k ∈ N)

||xk|| ≤ K||x0||κk .

Hence the control (6) is globally exponentially stable.
The proof of Theorem 2 follows immediately from Propo-

sition 4 and Proposition 5. In particular, by Proposition 4,
with `= 1

1−σ
for all (k ∈ N)

1
1+ γk

≤ (M||v0||2 +M||z0||2`)α

γ +(M||v0||2 +M||z0||2`)α
,

hence by Proposition 5 the control is globally exponentially
stable.

IV. IDENTIFYING A STABILIZING P

The design of a control in this framework requires first
computing an SPD P for which the control (3) has good
convergence properties. Then an appropriate relaxation can
be used to fit the control to the desired behavior for an
implementation. Searching over the whole positive definite
cone for an appropriate P is challenging, in particular as the
dimension of the system grows. In the case where the control
input is a scalar, we explore searching for stabilizing P over
a selected subset of the positive definite cone.

A. P Construction for Scalar Control Input

If control input u is a scalar then at each iteration k, g(xk)
is a vector in Rd therefore, g(xk)

P⊥ is a hyper-plane with
normal vector Pg(xk).

Suppose that there is a hyper-plane with normal vector
v ∈ Rd in the neighborhood of which the system exhibits
good convergence. Then it may be effective to construct a
P which restricts the dynamics near the hyper-plane, that
is for all (x ∈ Rd), construct P such that Pg(x) u v. We
explore computing such P by constructing a Singular Value
Decomposition (SVD) with the desired property.



Let {ei}d
i=1 the standard orthonormal basis and let Rv

a rotation matrix that rotates e1 to v. For example Rv
constructed with two Householder reflections as,

Rv = (I−2wwT )(I−2e1eT
1 )

where w = (−e1−v)
||−e1−v|| . Then with

Uv =

| | |
v Rve2 . . . Rved
| | |


let Pv be constructed with the SVD,

Pv =UvΛUT
v (11)

where Λ = diag([s,1 . . . ,1]) and s is a large scaling parame-
ter, in computations here s = 1×106.

Instead of searching over the Positive Definite Cone, we
search only over the set

P = {Pv : v ∈ Rd , ||v||= 1}

that is over the unit normal vectors in Rd .

V. ENSEMBLE KALMAN SEARCH

An ensemble Kalman methodology similar to that in [11]
could likely be employed to find a stabilizing P, however we
use a different variation with the intent to provide a more
thorough search, though at greater computational expense.
First we describe a general ensemble Kalman search strategy
following a similar construction to [17], [18] and then detail
how we implement it for a stabilizing P search. We seek only
to demonstrate that a scheme of this form can be effective for
identifying stabilizing P for systems, future work would be
needed to evaluate appropriate construction of an algorithm
for good performance.

Let y ∈ Rm be outputs or performance measures for a
system and let ŷ ∈ Rm a desired performance or output
objective, with G : V → Rm : v→ y the map from the input
space V to the performance measures. The problem is to
find a minimizer of the difference between the observed
performance and desired performance over the input space,
that is, solving

min
v∈V

1
2
||G (v)− ŷ||2 . (12)

The procedure is iterative and uses an ensemble of input
points at which the performance map is evaluated, then each
ensemble point is updated using summary statistics of the
output map over the ensemble according to the ensemble
Kalman filter rule.

For iteration n, the ensemble of size J will be denoted by
{v j

n}J
j=1 and the computed performance measures for each

ensemble point j of generation n will be denoted by {y j
n}J

j=1,
where for all j ∈ {1,2 . . . ,J}

y j
n = G (v j

n) .

For iteration n the mean ensemble estimate and mean per-
formance measure are given by

v̄n =
1
J

J

∑
j=1

v j
n , ȳn =

1
J

J

∑
j=1

y j
n .

Let Σ
v,y
n denote the ensemble performance cross co-

variance matrix, that is for v j,i
n element i of ensemble point

j, and y j,i
n performance measure i of ensemble point j in

iteration n, Σ
v,y
n is the (d×m) matrix with entries (`, i) given

by

(Σv,y
n )`,i =

1
J−1

J

∑
j=1

(v j,`
n − v̄`n)(y

j,i
n − ȳi

n) .

Let Σ
y,y
n the performance measure co-variance, the (m×m)

matrix with entries (`, i) given by

(Σy,y
n )`,i =

1
J−1

J

∑
j=1

(y j,`
n − ȳ`n)(y

j,i
n − ȳi

n) .

The target performance objective is used in the role of
the measurements of the ensemble Kalman filter. Random
perturbation of the objective has been found to be needed
for ensemble Kalman type schemes in order to keep the
ensemble from collapsing towards the mean value [19].

Random performance measure objectives {ŷ j
n}J

j=1 are gen-
erated for each ensemble point j at each iteration n, by
random normal perturbation of a given target objective ŷ with
co-variance R, that is

ŷ j
n ∼N (ŷ,R) .

At each iteration the ensemble points are updated by the
Kalman rule, for all j ∈ {1,2 . . . ,J}

v j
n+1 = v j

n +Σ
v,y
n (Σy,y

n +R)−1(y j
n− ŷ j

n)+w j
n , (13)

where {w j
n}J

j=1 are small random multi-normal perturbations
with co-variance Σw, that is for all j ∈ {1,2 . . . ,J}

w j
n ∼N (0,Σw) .

A. Implementation to compute a stabilizing P

We search for stabilizing P for systems (1) with scalar
control inputs over the subset of the positive definite cone
P using an ensemble Kalman search over the unit normal
vectors in Rd .

To evaluate the controls, we use the performance map G :
Rd×Rd→R2 : (x0,v)→ y, which constructs matrix Pv from
v as in (11) and computes the state trajectory from initial
condition x0, for a fixed number of time steps K ∈N, under
feedback control (3) with P = Pv, then maps the final state
xK to the two performance measures

y1 = ||xK ||2 y2 =
〈 f (xK)− xK | xK〉Pv

|| f (xK)− xK ||Pv ||xK ||Pv

(14)

The criterion y1 measures how close the control has
brought the state to the origin. The angle criterion y2

measures the component of the change in the state due to
the system dynamics, f (xK)− xK , which is in the subspace
g(xK−1)

P⊥ , and directed towards the origin with respect to the
P inner product. Then if the subspace is fixed, for example
the hyperplane vP⊥ , then that is the component of the change
which will be preserved by the control and move the state
towards the origin. Inclusion of this term was found to
improve performance.



To search for a stabilizing P, the ensemble was initialized
by random normal perturbation from a starting estimate v0,
where for all j ∈ {1, . . .J},

v j
0 = v0 +η j

with η j ∼N d(0, σ2
η) .

At each search iteration we implemented the following
procedure,

Procedure 1 Ensemble Kalman Search Update
1: generate random initial state x0, x0 ∼N (0,Σx0)
2: for j = 1,2 . . .J do
3: Set v = v j

n, compute Pv with (11).
4: Compute the state trajectory from x0 under control (3)

using Pv to terminal iteration K.
5: Compute performance measures (14) for the control
6: end for
7: Compute the performance objectives.
8: Update the ensemble with rule (13).
9: Normalize the ensemble elements.

Note that controls are tested from only one initial state at
each iteration, while a P is likely sought which will produce
good convergence over a neighborhood of the origin if not
globally. Control performance for ensemble points may be
tested for multiple initial states at each iteration, though at
significantly increased cost, for the cases we tested, using
only one initial state was sufficient.

VI. TEST EXAMPLES

A. Linear Example

Consider a system of the form (8) with

A =

[
.9974 .0539
−.1078 1.1591

]
, B =

[
.0013
.0539

]
.

The ensemble Kalman procedure was used to search for a
stabilizing P of the form (11). An ensemble of 50 vectors
in R2 was randomly initialized according to N 2(0,0.2). At
each search iteration solutions under the control of each en-
semble point were simulated for K = 8 steps from a random
intial state x0 ∼ N (0,1). Then the performance measures
(14) were computed, with the performance objectives given
by

ŷ1 ∼N (0, .0002) , ŷ2 ∼N (−.2, .01) .

The search procedure was iterated until satisfactory perfor-
mance measures were returned, after about 150 iterations the
ensemble mean was,

v = [−.9975,−.07]T .

A reference optimal LQR feedback control was computed
using

Q =

[
350 0

0 5

]
, R =

[
3.5
]
.

A relaxed P projection control (6) using weighting param-
eters of the form (7), was then chosen such that the control

had roughly the same maximal magnitude, and converged in
approximately the same time as the reference LQR control.
A suitable choice was found to be

γk =
.45
||xk||32

.

A comparison of the controls is shown in Fig. 1

Fig. 1. Comparison of LQR and relaxed P control from initial state x0 =
[2,1]T .

Note that the P control convergence rate increases as the
state approaches the origin, as can be more clearly seen in
Fig. 2.

Fig. 2. Comparison of convergence of LQR and relaxed P control on Log
scale.

The relaxed P projection control is slower than the LQR
control to bring the system near the origin, but has a reduced
overshoot, and transitions to a faster convergence rate once
near the origin.



B. Nonlinear Example

Consider a system of the form (1) with

f (x) .
=

[
2.2sin(.5x1)+ .1x2

.1x2
1 +1.8x2

]
, g(x) .

=

[
0

2+ .1cos(x2)

]
.

The Ensemble Kalman procedure was again used to search
for a stabilizing P of the form (11). An ensemble of
100 vectors in R2 was randomly initialized according to
N 2(0,0.2). At each search iteration solutions under the
control of each ensemble point were simulated for K =
4 steps from a random intial state x0 ∼ N (0,1). Then
the performance measures (14) were computed, with the
performance objectives given by

ŷ1 ∼N (0, .002) , ŷ2 ∼N (−.2, .01) .

The search procedure was iterated until satisfactory perfor-
mance measures were returned, after about 250 iterations the
ensemble mean was,

v = [.9950, .1003]T .

A relaxed P projection control was then implemented with
weighting parameters

γk =
.1
||xk||22

.

The result is shown in Fig. 3

Fig. 3. Nonlinear example with relaxed P control implementation.

The parameter choice (7) for the relaxed P projection con-
trol resulted in smooth system responses for many choices
of γ and α tested.

VII. CONCLUSION

The control design presented here can be effective for both
linear and nonlinear systems. The advantage of the approach
we present, is that an appropriate P needs to only be com-
puted once for a system offline, then tuning of the relaxed
control can be explored for a particular implementation, in
contrast to the strategy presented by Ornelas-Tellez et al.

which requires supplying a quadratic cost for the control then
computing an associated P, which could require iteration to
fit an implementation.

While good convergence was seen in the tested examples
we do not address the existence of a meaningful cost
functional for which the relaxed P projection controls (5)
are optimal, the structure of such a functional if it can be
constructed could give good insight into how the control can
be effectively employed, and is an interesting area for future
work.

Analysis of the stability of the relaxed P projection control
for nonlinear systems and a real time implementation for
stabilization control of a double inverted pendulum is in
preparation.

ACKNOWLEDGMENT

This work was supported by the Center for Research in
Scientific Computation at North Carolina State University.

REFERENCES

[1] B. Anderson and J. Moore, Optimal Control:Linear Quadratic Meth-
ods. Englewook Cliffs, NJ: Prentice-Hall, 1990.

[2] S. Glad, “Robustness of nonlinear state feedback-a survey,” Automat-
ica, vol. 23, pp. 425–435, 1987.

[3] M. J. R. Sepulchre and P. V. Kokotovic, Constructive Nonlinear
Control. Berlin: Springer-Verlag, 1997.

[4] M. Krstic and H. Deng, Stabilization of Nonlinear Uncertain Systems.
Berlin: Springer-Verlag, 1998.

[5] S. Beeler, H. Tran, and H. Banks, “Feedback control methodologies for
nonlinear systems,” Journal of Optimization Theory and Applications,
vol. 107, 02 2000.

[6] R. Freeman and P. Kokotovic, “Inverse optimality in robust stabiliza-
tion,” SIAM Journal on Control and Optimization, vol. 34, no. 4, pp.
1365–1391, 1996.

[7] F. Ornelas-Tellez, E. Sanchez, A. Loukianov, and J. Rico, “Robust in-
verse optimal control for discrete-time nonlinear system stabilization,”
European Journal of Control, vol. 20, 01 2013.

[8] F. Ornelas-Tellez, E. N. Sanchez, A. G. Loukianov, and E. M.
Navarro-Lpez, “Speed-gradient inverse optimal control for discrete-
time nonlinear systems,” in 2011 50th IEEE Conference on Decision
and Control and European Control Conference, Dec 2011, pp. 290–
295.

[9] R. Ruiz-Cruz, E. N. Sanchez, F. Ornelas-Tellez, A. G. Loukianov,
and R. G. Harley, “Particle swarm optimization for discrete-time
inverse optimal control of a doubly fed induction generator,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1698–1709, Dec 2013.

[10] M. Almobaied, I. Eksin, and M. Guzelkaya, “Inverse optimal
controller based on extended kalman filter for discrete-
time nonlinear systems,” Optimal Control Applications and
Methods, vol. 39, no. 1, pp. 19–34, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2331

[11] H. T. Tran and A. M. Arnold, “Ensemble kalman filtering for inverse
optimal control,” in Lecture Notes in Engineering and Computer Sci-
ence: Proceedings of The International MultiConference of Engineers
and Computer Scientists, Hong Kong, March 2018, pp. 526–530.

[12] G. Evensen, “Sequential data assimilation with a nonlinear quasi-
geostrophic model using monte carlo methods to forecast error statis-
tics,” Journal of Geophysical Research: Oceans, vol. 99, no. C5, pp.
10 143–10 162, 1994.

[13] ——, “The ensemble kalman filter for combined state and parameter
estimation,” IEEE Control Systems Magazine, vol. 29, no. 3, pp. 83–
104, June 2009.

[14] A. Arnold, D. Calvetti, and E. Somersalo, “Parameter estimation for
stiff deterministic dynamical systems via ensemble kalman filter,”
Inverse Problems, vol. 30, no. 10, p. 105008, sep 2014.

[15] N. B. Kovachki and A. M. Stuart, “Ensemble kalman
inversion: A derivative-free technique for machine learn-
ing tasks,” Inverse Problems, 2019. [Online]. Available:
http://iopscience.iop.org/10.1088/1361-6420/ab1c3a



[16] E. Haber, F. Lucka, and L. Ruthotto, “Never look back - a modified
enkf method and its application to the training of neural networks
without back propagation,” 2018.

[17] M. A. Iglesias, K. J. H. Law, and A. M. Stuart, “Ensemble kalman
methods for inverse problems,” Inverse Problems, vol. 29, no. 4, p.
045001, mar 2013.

[18] C. Schillings and A. M. Stuart, “Analysis of the ensemble kalman filter
for inverse problems,” SIAM Journal on Numerical Analysis, vol. 55,
02 2016.

[19] G. Burgers, P. Jan van Leeuwen, and G. Evensen, “Analysis scheme in
the ensemble kalman filter,” Monthly Weather Review, vol. 126, no. 6,
pp. 1719–1724, 1998.


